Correlation based dynamic time warping of multivariate time series

نویسندگان

  • Zoltán Bankó
  • János Abonyi
چکیده

0957-4174/$ see front matter 2012 Elsevier Ltd. A http://dx.doi.org/10.1016/j.eswa.2012.05.012 ⇑ Corresponding author. Tel.: +36 88 624209. E-mail address: [email protected] (J. Ab In recent years, dynamic time warping (DTW) has begun to become the most widely used technique for comparison of time series data where extensive a priori knowledge is not available. However, it is often expected a multivariate comparison method to consider the correlation between the variables as this correlation carries the real information in many cases. Thus, principal component analysis (PCA) based similarity measures, such as PCA similarity factor (SPCA), are used in many industrial applications. In this paper, we present a novel algorithm called correlation based dynamic time warping (CBDTW) which combines DTW and PCA based similarity measures. To preserve correlation, multivariate time series are segmented and the local dissimilarity function of DTW originated from SPCA. The segments are obtained by bottom-up segmentation using special, PCA related costs. Our novel technique qualified on two databases, the database of signature verification competition 2004 and the commonly used AUSLAN dataset. We show that CBDTW outperforms the standard SPCA and the most commonly used, Euclidean distance based multivariate DTW in case of datasets with complex correlation structure. 2012 Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Correlation Based Dynamic Time Warping

Dynamic Time Warping (DTW) is a widely used technique for univariate time series comparison. This paper proposes a new algorithm for the comparison of multivariate time series which generalize DTW for the needs of correlated multivariate time series.

متن کامل

Lower-Bounding of Dynamic Time Warping Distances for Multivariate Time Series

A tight lower-bounding measure for dynamic time warping (DTW) distances for univariate time series was introduced in [Keogh 2002] and a proof for its lower-bounding property was presented. Here we extend these findings to allow lower-bounding of DTW distances for multivariate time series.

متن کامل

Optimal Current Meter Placement for Accurate Fault Location Purpose using Dynamic Time Warping

This paper presents a fault location technique for transmission lines with minimum current measurement. This algorithm investigates proper current ratios for fault location problem based on thevenin theory in faulty power networks and calculation of short circuit currents in each branch. These current ratios are extracted regarding lowest sensitivity on thevenin impedance variations of the netw...

متن کامل

Spider Algorithm for Clustering Time Series

In proportion to the rapid development of information technology, time series are today accumulated in finance, medicine, industry and so forth. Therefore, an analysis of them is an urgent need for these applications. As solving these problems clustering time series has much been paid attention. The similarity for the clustering is commonly measured with Euclidean distance and dynamic time warp...

متن کامل

A Recurrence Plot-Based Distance Measure

Given a set of time series, our goal is to identify prototypes that cover the maximum possible amount of occurring subsequences regardless of their order. This scenario appears in the context of the automotive industry, where the goal is to determine operational profiles that comprise frequently recurring driving behavior patterns. This problem can be solved by clustering, however, standard dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Expert Syst. Appl.

دوره 39  شماره 

صفحات  -

تاریخ انتشار 2012